cadastro-checkin-PE/docs/run_benchmark_graph.py

41 lines
1.3 KiB
Python

import pandas as pd
import matplotlib.pyplot as plt
# Carrega CSV salvo pelo benchmark
df = pd.read_csv("benchmark_results.csv")
fig, ax1 = plt.subplots(figsize=(12, 6))
df_sorted = df.sort_values("avg_duration_sec", ascending=True)
color = 'tab:blue'
ax1.set_xlabel('Modelo')
ax1.set_ylabel('Duração [blue] (s)', color=color)
ax1.bar(df_sorted["model"], df_sorted["avg_duration_sec"], color=color, alpha=0.6)
ax1.tick_params(axis='y', labelcolor=color)
plt.xticks(rotation=45)
# Segundo eixo: acurácia
ax2 = ax1.twinx()
color = 'tab:green'
ax2.set_ylabel('Acurácia média (similarity)', color=color)
ax2.plot(df_sorted["model"], df_sorted["avg_similarity_score"], color=color, marker='o')
ax2.tick_params(axis='y', labelcolor=color)
plt.title("Média de Tempo e Acurácia por Modelo com 7 Imagens")
plt.tight_layout()
plt.grid(True)
plt.show()
'''
curl -X POST http://localhost:5006/benchmark_face_match \
-F "person_id=vitor" \
-F "images[]=@/home/v/Desktop/reconhecimento/imgs/a.jpg" \
-F "images[]=@/home/v/Desktop/reconhecimento/imgs/b.jpg" \
-F "images[]=@/home/v/Desktop/reconhecimento/imgs/c.jpg" \
-F "images[]=@/home/v/Desktop/reconhecimento/imgs/d.jpg" \
-F "images[]=@/home/v/Desktop/reconhecimento/imgs/e.jpg" \
-F "images[]=@/home/v/Desktop/reconhecimento/imgs/f.jpg" \
-F "images[]=@/home/v/Desktop/reconhecimento/imgs/g.jpg"
'''